
ITTF/STI Tracking

Introduction

The ITTF tracker is based on a Kalman filter. The Kalman filter is a technique first
designed and used for radar signal processing. It is however quite general and is
nowadays used in many pattern recognition applications. It was introduced in high
energy physics by P. Billoir as a progressive method of track fitting. The equivalence
between progressive methods and Kalman filters was established by R. Fruhwirth.

Kalman filter applied to track reconstruction involves a linear, recursive method of track
fitting which was shown to be equivalent to a global least square minimization procedure.
It is therefore an optimal, linear estimator of track parameters. Provided the track model
is truly linear, and measurement errors are Gaussian, the Kalman filter is also efficient. It
was formally shown that no non-linear estimator can do better.

The Kalman filter presents the following attractive features which make it preferable over
global least square methods under appropriate circumstances.

• The filter is recursive and is thus well suited for progressive track finding and
fitting.

• The filter can be extended into a smoother and thereby provides for optimal

estimates track parameters along tracks.

• It permits efficient resolution and removal of outliers points.

• No large matrix need to be handled and in particular inverted in contrast with
least-sqaure methods.

A complete justification and theory of Kalman filters can be found in many articles and
textbooks. Here we summarize the essential elements of Kalman filtering required for the
understanding of the ITTF tracker inner working and the following document.

Basic Principle of the Kalman Filter

In the framework of the Kalman filter, a track is represented a set of parameters, called
the Kalman state vector,

!
x , which is allowed to change along the track’s path. The state

is regarded as a dynamically evolving stochastic set of values through the detector. The
values may vary along the track because of the nature of the measuring process (e.g. if
the magnetic field to perform momentum analysis is not constant) or because of process

and measurement noises. While electrical signals from a radar can be sampled in time at
(almost) arbitrarily small time intervals, it is not possible or meaningful to follow tracks
in between measurement devices or scattering planes. One then proceeds to determine the
Kalman state vector of a track at finitely many positions (layers) within a detector. We
assume the detector can in fact be represented as collection of n surfaces or layers.
Measurements are effected in a subset of those layers. There are also a number of
traversed layers that contribute no information to the knowledge of the track – in fact to
the contrary, they contribute loss of information through differential energy loss and
multiple Coulomb scattering (MCS). The state vector is therefore defined at finitely many
layers only. Starting at some base layer “i”, one proceeds iteratively to predict and
measure the state at following layers. We assume for this purpose that given the
knowledge of a track state at layer k, one can predict its state at layer k+1 using a linear
function as follows:

(1.1)

!
x
k
= F

k

!
x
k!1

+
!
w
k

The quantity Fk represents a linear function (a matrix) describing the evolution of the
state from layer k-1 to layer k. In practice, it is often not possible to use a linear function
as the expression above. It is in fact the case for charged particle track propagation in a
solenoidal magnetic field. The Kalman filter principle however remains the same, and is
said to be extended. The quantity

!
w
k
 is referred to as process noise. It corresponds to

stochastic variations of the signal (state) through the detector due or associated with the
propagation of tracks. One assumes the process noise to be unbiased, i.e. to have zero
mean, and to have a predictable covariance matrix Qk. The state vector has an associated
covariance error matrix noted Ck.

One represents measurements performed on layer k with vector

!
m

k
. The dimensionality

of

!
m

k
 is inferior to that of the state vector and is typically limited to one (straw tube

chambers) or two (TPC pad row, SVT wafer, etc). One further assumes that it is possible,
given an estimate of the Kalman state, to project (predict) a measurement by means of a
linear function.

(1.2)

!
m

k
= H

k

!
x
k
+
!
!
k

The quantity H

k
represents the linear function permitting a projection of the state vector

into measurement space or coordinates. In ITTF, we chose the track model such that the
measurement vector coincides with two of the state parameters. The matrix is thus
trivially reduced to a diagonal matrix. This is not always possible or desirable. There are
also cases a linear function is not available. Those situations will however not be
discussed here. The vector

!
!
k
 represents a measurement noise associated with the

determination of the measurement vector

!
m

k
. We assume here that the measurement

noise is unbiased, i.e. that it has zero mean, and can be characterized with a measurable
of predictable error covariance matrix, which we shall note V

k
. We further assume that

the process and measurement noises are strictly independent, and that successive
measurement noises are also uncorrelated.

Given an estimate of the Kalman state at layer k-1, noted

!
x
k!1|k!1

, the filter starts with the
extrapolation, of this state vector to the next layer (k).

(1.3)

!
x
k |k!1

= F
k

!
x
k!1|k!1

One also predicts (projects) the covariance matrix of the state vector as follows

(1.4) C

k |k!1
= F

k
C

k!1|k!1
F
k

T
+Q

k

The measurement

!
m

k
is then used to update (hopefully improve) the knowledge of the

Kalman state with the following expression:

(1.5)

!
x
k |k

=
!
x
k |k!1

+K
k

!
m

k
!H

k

!
x
k |k!1()

The quantity K

k
 is called Kalman gain matrix. It can be calculated as follows:

(1.6) K

k
= C

k |k!1
H

k

T
V
k
+H

k
C

k |k!1
H

k

T()
!1

Note that the matrix inversion is typically rather simple because the measurement error
covariance matrix has a small dimensionality. In some cases, when H is “diagonal”, the
inversion may even become trivial. See ITTF case in the following sections.

To operate the Kalman filter, one first initializes the covariance matrixC

0|0
 with large

diagonal values, and null off diagonal elements. As the filter progresses from layer to
layer, more points are added on a track, and the diagonal elements reduce to values
representative of the uncertainty on the track parameters. Initially the factor C

k |k!1

dominates the denominator V
k
+H

k
C

k |k!1
H

k

T()
!1

 so the gain K
k
 is near unity. As the

number of points associated to the track becomes appreciable, the denominator becomes
dominated by the measurement errors Vk and the Kalman gain becomes progressively
smaller. With large Kalman gain, the addition of a new measurement to a track has a
significant impact on the updated track parameters. As the gain reduces while more
points are added to a track, the addition of new points has progressively smaller impact
on the update track state.

The filtered covariance is given by:

(1.7) C

k |k
= I !K

k
H

k()Ck |k!1

where “I” denotes the identity matrix. Again, one finds that initially, the Kalman gain
being large, the covariance matrix rapidly decreases in magnitude. As the track becomes
longer, the gain is reduced and the addition of further points has little impact on its
covariance.

The smoothed state vector in layer k is based on all n layers where points were found. It
can be calculated as follows:

(1.8)

!
x
k |n

=
!
x
k |k

+ A
k

!
x
k+ |n

!
!
x
k+1|k() ,

with the smoother gain matrix

(1.9) A

k
= C

k |k
F
k

T
+ C

k+1|k()
!1

The covariance matrix of the smoothed state vector is:

(1.10) C

k |n
= C

k |k
+ A

k
C
k+1|n

! C
k+1|k()Ak

T

We note that we do not currently apply a smoothing pass but rather effect a backward
pass after the forward pass thereby essentially achieving the same result.

The procedure used in STI can be referred as a combinatorial Kalman filter (CKF). One
starts from the outer layer of the detector (i.e. TPC) with a track seed formed on the basis
of 4 to 6 points fitted with a fast circle fitter to obtain initial values of the track
parameters. This initial estimate is then used to project the track inward, to the next
layer, and measurements compatible with the predictions are considered for addition to
the track. A ! 2 criterion is used to select the most suitable candidate and to decide
whether this most suitable candidate is in fact sufficiently close to the track to be added to
it.

The STI Kalman Filter

We discuss the central and forward regions separately. The forward region
implementation is in progress while the central region implementation is functional.

The Central Region

The following sections describe the choice of the tracking model used in the central
region, the propagation of this state, its Kalman update, the propagation of energy loss
effects, and the propagation of MCS effects.

Choice of Tracking (State) Model

The STAR solenoidal magnet was design to provide a very uniform magnetic field within
its central region. Indeed measurements of the field confirmed that the field longitudinal
components is constant to within a few parts per thousand and that radial and azimuthal

components are negligible within the TPC region. We will then heretofore assume the
field is perfectly constant and based on tracking model on a purely axial field. With such
a field geometry, and neglecting momentarily energy loss (EL) and multiple coulomb
scattering (MCS) effects, the charge particle trajectories can be described as simple helix:

(1.11)
x = x

c
+ Rcos!

y = y
c
+ Rsin!

z = z
c
+ R! tan"

where x,y,z are the coordinates of the trajectory (as illustrated in Fig 1), xc, yc are the
coordinates of the center of the circle formed by projected the helix in the transverse
plane x-y, R is the radius of the circle, and φ is the phase angle of the helix.

Our choice of the tracking model is predicated mainly by the TPC geometry which
consists of 45 parallel pad rows separated in 12 sectors. We choose the x-axis to be local
to each sector and along a radius normal to the pad row planes, the y-axis is chosen along
the pad row plane and perpendicular to the beam direction, while the z-axis is chosen to
be along the beam direction. In this context, “x” becomes the natural choice for the
independent variable. In Eq. (1.11), there are 9 variables, and 3 equations. Choosing “x”
as the independent variable leaves five independent track state parameters. The choice of
these five parameters is somewhat arbitrary. Given position measurements in the TPC are
performed in y-z plane, it is natural to use these two coordinates as part of the Kalman
state. The measurement vector is set to be

(1.12)

!
mk =

yk

zk

!

"
#

$

%
&

where yk and zk are the coordinates of a track on measurement plane “k”. We similarly
choose those two coordinates to be the first two elements of the Kalman state vector.

(1.13)

!
xk =

yk

zk

p
2

p
3

p
4

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

where the components p2, p3, and p4 denote elements to be identified in the following.
With the above choices for m and x, the measurement matrix, H, is reduced to a trivial
form as follows:

(1.14) H =
1 0 0 0 0

0 1 0 0 0

!

"
#

$

%
&

The Kalman gain calculation (see Eq (1.6)) is then reduced to

(1.15)

K

k
= C

k |k!1Hk

T
V
k
+H

k
C

k |k!1Hk

T()
!1

K
k
= C

k |k!1

1 0

0 1

0 0

0 0

0 0

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

V
00

V
01

V
10

V
11

"

#
$

%

&
' +

1 0 0 0 0

0 1 0 0 0

"

#
$

%

&
'

c
00

c
01

c
02

c
03

c
04

c
10

c
11

c
12

c
13

c
14

c
20

c
21

c
22

c
23

c
24

c
30

c
31

c
32

c
33

c
34

c
40

c
41

c
42

c
43

c
44

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'
k |k!1

1 0

0 1

0 0

0 0

0 0

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

(

)

*
**

+

*
*
*

,

-

*
**

.

*
*
*

!1

K
k
=

c
00

c
01

c
10

c
11

"

#
$

%

&
'
k |k!1

V
00

V
01

V
10

V
11

"

#
$

%

&
' +

c
00

c
01

c
10

c
11

"

#
$

%

&
'
k |k!1

(
)
*

+*

,
-
*

.*

!1

Track Propagation

In the central region of the detector, we use a local radial track model defined as
illustrated in Figure 1. The normal radial position, x, is used as an independent variable
while the track trajectory is described with parameters y, z, η, C=1/R, and ξ=tanλ. R is
the radius of curvature. “tanλ” is defined as:

(1.1)

tan! =
p

z

p
"

Within the code, for reasons of CPU efficiency, one uses and stores variable named
sinCA, and cosCA. These corresponds respectively to the sine and cosine of the crossing
angle θ defined as

(1.2)

tan! =
p

y

p
x

One easily verifies that

(1.3) sin! = Cx "#

We define the track Kalman state p at step k as

(1.4)

!
pk =

yk

zk

!k

Ck

"k

#

$

%
%
%
%
%%

&

'

(
(
(
(
((

In the code, the track parameters are represented either with above variable y, z, η,
C=1/R, and ξ=tanλ , or with vector elements denoted p0, p1, …, p4.

The projection of the state from detector layer k to layer k+1 is accomplished by
incrementing the independent variable x from x1 to x2 = x1+Δx. The projected state vector
is given by the following functions

(1.5)

!
pk+1 = f(

!
pk+1)

In the following, rather than noting the state vector elements i=0,…, 4, at step k, as pk,i
we drop the “k” index for clarity and simplicity of expressions. Two steps k and k+1 will
then be denoted with the use of primes, i.e. pi‘= fi(p). With this notation, the functions
fi(p) can be written:

(1.6)

y ' = fo(
!
p) = y + !x

sin"
1
+ sin"

2()
cos"

1
+ cos"

2()

z ' = f
1
(
!
p) = z + R tan# "

2
$"

1()

= z + R tan# sin$1
sin"

2
cos"

1
$ cos"

2
sin"

1()

= z + R tan# sin$1 sin"
2
$ sin"

1() sin"2 + sin"1()
sin "

1
+"

2()

%

&'
(

)*

" z + R tan#
sin"

2
$ sin"

1() sin"2 + sin"1()
sin "

1
+"

2()

" z + !x tan#
sin"

1
+ sin"

2()
sin "

1
+"

2()

+ ' = f
2
(
!
p) = +

C ' = f
3
(
!
p) = C

tan# ' = f
4
(
!
p) = tan#

The angles θ1 and θ2 are the azimuthal crossing angles corresponding to states p and p’
respectively. Their sine and cosines are stored in the code as sinCA1, sinCA2, cosCA1,
and cosCA2.

Track Error Propagation and MCS

The propagation of the error matrix is accomplished with the equation:

(1.7)

c

k+1

!
= F

k
c

k
F

k

T
+ Q

k

In this equation, Ck is the error matrix after step “k” of the Kalman filtering, Qk is the
process noise associated with the current step, and C-

k is the estimated error matrix after
projection. The quantity Fk is a matrix function enabling the propagation of the errors at
step k, into an estimate of errors at step k+1. Here again, and in the following, we drop
the k index and use prime notation for clarity.

Consider trajectory 2 deviating from the nominal trajectory 1 as illustrated in Fig 2. At
step k, deviates for parameters “i” between trajectories 2 and 1 amounts to Δpi. The
deviates at step k+1 are thus

(1.8)

!pi ' " fi

!
p + !

!
p() # fi

!
p()

We use us a truncated Taylor expansion to calculate the function fi(p+Δp).

(1.9)

fi
!
p + !

!
p() = fi

!
p() + !

!
p
"fi
!
p()

"
!
p

!
!
p=0

= fi
!
p() + !pj

j

#
"fi
!
p()

"pj

The error covariance Ck is defined as the expectation value !p

i
!p

j over an ensemble of

measurements at step k. The covariance !p
i
'!p

j
' at step k+1 can be estimated on the

basis of Eqs (1.8) and (1.9). We get

(1.10)

!pi!pj = !pk!pl
k ,l

"
#fi
!
p()

#pk

#f j
!
p()

#pl

We define matrix functions F as follows:

(1.11)

Fi,k =
!fi
!
p()

!pk

In order to calculate the matrix elements Fi,k, we first note:

(1.12)

!sin"

!#
=
! Cx $#()

!#
= $1

!cos"

!#
=
!cos"

!sin"

!sin"

!#
= tan" = %

!sin"

!C
= x

!cos"

!C
= $x tan"

We define u = sin!
2
cos!

1
" cos!

2
sin!

1
. We then note

(1.13)

!z '

!u
=
R tan"

1# u
2

!z '

!s$
2

=
!z '

!u

!u

!s$
2

=
R tan"

1# u
2

c$
1

!z '

!s$
1

= #
R tan"

1# u
2

c$
2

!z '

!c$
1

=
R tan"

1# u
2

s$
2

!z '

!c$
2

= #
R tan"

1# u
2

s$
1

Based on these, we then proceed to calculate (using short hand notation “c” and “s” for
cosines and sines.

(1.14)

!z '

!u
=
R tan"

1# u
2

!z '

!s$
2

=
!z '

!u

!u

!s$
2

=
R tan"

1# u
2

c$
1

!z '

!s$
1

= #
R tan"

1# u
2

c$
2

!z '

!c$
1

=
R tan"

1# u
2

s$
2

!z '

!c$
2

= #
R tan"

1# u
2

s$
1

Derivatives of z’ with η and C can then be written

(1.15)

!z '

!"
=

!z '

!c#
1

!c#
1

!"
+

!z '

!c#
2

!c#
2

!"
+

!z '

!s#
1

!s#
1

!"
+

!z '

!s#
2

!s#
2

!"

=
R tan$

1% u2
&s#

2
% &s#

1
+ c#

2
% c#

1{ }

!z '

!C
=
R tan$

1% u2
%x

1
&s#

2
+ x

2
&s#

1
% x

1
c#

2
+ x

2
c#

1{ }

We then get using above equations

(1.16)

F =

1 0
!x "2 c#

1
+ c#

2() " s#
1
+ s#

2() t#1 + t#2(){ }
c#

1
+ c#

2()
2

!x x
1
+ x

2() c#1 + c#2() + s#
1
+ s#

2() x1 t#1 + x2 t#2(){ }
c#

1
+ c#

2()
2

0

0 1
R tan$

1" u2
%s#

2
" %s#

1
+ c#

2
" c#

1{ }
R tan$

1" u2
"x

1
%s#

2
+ x

2
%s#

1
" x

1
c#

2
+ x

2
c#

1{ }
!x s#

1
+ s#

2()
s #

1
+#

2()

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

&

'

(
(
(
(
(
(
(
(
(
(

)

*

+
+
+
+
+
+
+
+
+
+

where a shorthand notation cθi=cosθi, etc was used for brevity.

In the code, rather than multiplying the error matrix by F and Ft directly, one uses a
modified transform defined as

(1.17) F ' = F ! I

where I is a unit matrix. The propagation of the error matrix is then rewritten as

(1.18)

c ' = F '+ I()c F '+ I()
T

= F 'cF
T
+ F 'c + cF '

T
+ c

Note that this modified transform is used in a number of places through the code.

Energy Loss Corrections

The energy loss is calculated according to

(1.19) E ' = E + !E

with

(1.20)

!E = !x
dE

dx

where dE/dx is calculated with the Bether-Bloch equation.

The energy loss impacts the curvature as follows:

(1.21)

C(E ') = C(E) + !E
dC(E)

dE
E

= C(E) 1"
p2

+ m2

p2
!E

#

$

%
%

&

'

(
(

In the code, we use a pion mass hypothesis in the above expression.

Fig 2. Description of MCS effects.

MCS

Multiple scattering through the various material layers contributes a process noise to the
propagation of the covariance matrix. In the local reference frame of a track, MCS cause
the track to be deflected “vertically” and “horizontally” by angles we label as γ1 and γ 2.
as illustrated in Fig. 2.

For a thin scatterer, the noise process covariance matrix can then be estimated with the
expression

Q
k
= ! 2

" #,C, tan$()
" !

1
,!

2()

%

&
'
'

(

)
*
*

1 0

0 1

%

&
'

(

)
*

" #,C, tan$()
" !

1
,!

2()

%

&
'
'

(

)
*
*

T

λ

x

θ1
θ2

γ

To calculate the above expression, we express the MCS in the track reference frame with
the vector:

(1.22)

!
n =

1

!
1

!
2

"

#

$
$
$

%

&

'
'
'

where

!

1
!1; !

2
!1. The track trajectory in the detector frame is represented with

two angles θ and λ defined as follows:

(1.23)

tan! =
p

z

p
"

tan# =
p

y

p
x

One obtains the detector representation of the track with the rotation R+:

(1.24)

R
+
=

cos! " sin! 0

sin! cos! 0

0 0 1

#

$

%
%
%

&

'

(
(
(

cos) 0 " sin)

0 1 0

sin) 0 cos)

#

$

%
%
%

&

'

(
(
(

=

cos! cos) " sin! "cos! sin)

sin! cos) cos! " sin! sin)

sin) 0 cos)

#

$

%
%
%

&

'

(
(
(

The track direction in the detector frame, after MCS, is described by

(1.25)

!
n = R

+

1

!
1

!
2

"

#

$
$
$

%

&

'
'
'

!
n =

cos(cos) * sin(*cos(sin)

sin(cos) cos(* sin(sin)

sin) 0 cos)

"

#

$
$
$

%

&

'
'
'

1

!
1

!
2

"

#

$
$
$

%

&

'
'
'

!
n =

cos(cos) * !
1
sin(* !

2
cos(sin)

sin(cos) + !
1
cos(* !

2
sin(sin)

sin) + !
2
cos)

"

#

$
$
$

%

&

'
'
'

We next calculate derivatives of the components of vector n with respect to angles γ1 and
γ2.

(1.26)

!n
x

!"
1

= # sin$;
!n

x

!"
2

= # cos$ sin%

!n
y

!"
1

= cos$;
!n

y

!"
2

= # sin$ sin%

!n
z

!"
1

= 0;
!n

z

!"
2

= cos%

Likewise for the transverse component nt.

(1.27)

!n
t

!"
1 " 1 =0

=

n
x

!n
x

!"
1

+ n
y

!n
y

!"
1

n
t

" 1 =0

=
cos# cos$() % sin#() + sin# cos$() cos#()

n
t

= 0

!n
t

!"
2 #2 =0

=

n
x

!n
x

!"
2

+ n
y

!n
y

!"
2

n
t

#2 =0

=
% cos$ sin$

n
t

= % sin$

One now calculates

(1.28)

! tan"

!#
1

= 0

! tan"

!#
2

=
1

cos
2 "

! tan$

!#
1

=
1

cos
2% cos"

! tan$

!#
2

= 0

From which one gets

(1.29)

!"

!#
1

=
!"

! tan"

! tan"

!#
1

= 0

!"

!#
2

=
!"

! tan"

! tan"

!#
2

= cos
2 "

1

cos
2 "

= 1

!$

!#
1

=
!$

! tan$

! tan$

!#
1

= cos
2$

1

cos
2$ cos"

=
1

cos"

!$

!#
2

= 0

and we define the matrix

(1.30)
! ",#()

! $
1
,$

2()
=

1 0

0
1

cos"

%

&

'
'

(

)

*
*

We next proceed to calculate the derivative of the Kalman state vector with respect to λ,
and θ. First recall

p! = pcos"

C =
k

pcos"

sin# = Cx $%

The relevant derivatives are then

(1.31)

!C

!"
= 0

!C

!#
=

$k

pcos
2 #
($ sin#) = C tan# = C%

!&

!"
= $ cos"

!&

!#
= x

!C

!#
= xC tan# = xC%

! tan#

!"
= 0

! tan#

!#
=

1

cos
2 #

= 1+ %2

from which we write the matrix

(1.32)
!(",C, tan#)

!(#,$)
=

xC tan# % cos$

C tan# 0

1+ tan
2 # 0

&

'

(
(
(

)

*

+
+
+

The process noise matrix Qk is then calculated as follows:

(1.33)

Q
k
=

!
!
x

! "
1
,"

2()

#

$
%
%

&

'
(
(

"
1

2
0

0 "
2

2

#

$

%
%

&

'

(
(

!
!
x

! "
1
,"

2()

#

$
%
%

&

'
(
(

T

where the RMS scattering angles γ1 and γ2 are calculated based on the expression:

(1.34)

!
1

2
= !

2

2
= ! 2

=
14.1

p"
#
$%

&
'(

2

X

X
o

So, one gets

(1.35)

Q
k
= ! 2

" #,C, tan$()
" $,!()

%

&
'
'

(

)
*
*

" $,!()
" +

1
,+

2()

%

&
'
'

(

)
*
*

1 0

0 1

%

&
'

(

)
*

" $,!()
" +

1
,+

2()

%

&
'
'

(

)
*
*

T

" #,C, tan$()
" $,!()

%

&
'
'

(

)
*
*

T

Substitute the results obtained above for the various matrices

(1.36)

Q
k
= ! 2

xC" #cos$

C" 0

1+ "2
0

%

&

'
'
'

(

)

*
*
*

1 0

0
1

cos+

%

&

'
'
'

(

)

*
*
*

1 0

0
1

cos+

%

&

'
'
'

(

)

*
*
*

T
xC" #cos$

C" 0

1+ "2
0

%

&

'
'
'

(

)

*
*
*

T

= ! 2

xC" #cos$

C" 0

1+ "2
0

%

&

'
'
'

(

)

*
*
*

1 0

0 1+ "2

%

&
'

(

)
*

xC" C" 1+ "2

#cos$ 0 0

%

&
'

(

)
*

= ! 2

xC" #cos$

C" 0

1+ "2
0

%

&

'
'
'

(

)

*
*
*

xC" C" 1+ "2

#cos$ 1+ "2() 0 0

%

&
'
'

(

)
*
*

One finally gets:

(1.37)

Q
k
= ! 2

x2C 2"2
+ cos

2# 1+ "2() xC 2"2 xC" 1+ "2()
xC 2"2 C 2"2 C" 1+ "2()

xC" 1+ "2() C" 1+ "2() 1+ "2()
2

$

%

&
&
&
&
&

'

(

)
)
)
)
)

Kalman Vector and Error Matrix Rotation

The track reconstruction proceeds in reference frames local to the detector they traverse.
Given tracks may cross from one sector to another, it is thus necessary to effect a change
of coordinates, i.e. a rotation of the track state. This rotation impacts both the Kalman
state and the error matrix. We consider in this section the modification of the Kalman
state

!
p = yi , zi ,!i ,Ci , tan"i() under a rotation about the “z” axis by an angle α.

By definition of this rotation, the position of a point (or projection) is transformed
according to:

(1.38)
x '

y '

z '

!

"

#
#
#

$

%

&
&
&

=

cos' sin' 0

(sin' cos' 0

0 0 1

!

"

#
#
#

$

%

&
&
&

x

y

z

!

"

#
#
#

$

%

&
&
&

The value yi’ is thus trivially:

(1.39) y ' = !x sin" + ycos"

The center of the helix (circle) is located at coordinates (xo,yo,zo). By definition of the
variable η, one has:

(1.40) x

o
= ! /C

One also finds:

(1.41) yo = y + R 1! Cx !"()
2

The value ηi’ after rotation is thus:

(1.42) ! ' = !cos" + Cy + 1# Cx #!()
2()sin"

In summary, a rotation by an angle α about the z-axis modifies the Kalman state as
follows:

(1.43)

y ' = !x sin" + ysin"

z ' = z

' = #cos" + Cy + cos$()sin"

C ' = Ci

tan% ' = tan%

We next consider the error covariance matrix associated with these parameters, i.e. how
to transform the original covariance matrix. For small errors, one has

(1.44) ci, j ' = ck ,l
!pi '

!pk

!pj '

!plk ,l

" # ck ,lFi,kFj ,l
k ,l

"

where we defined the coefficients Fi,j as:

(1.45) Fi,k !
"pi '

"pk

Most of these coefficients are either unity or null. Four coefficients only are non trivial.
They are:

(1.46)

!y '

!y
= cos"

!# '

!y
= C sin"

!# '

!#
= cos" +

Cx $#()

1$ Cx $#()
2

sin"

!# '

!C
= ysin" $

Cx $#()x

1$ Cx $#()
2

sin"

The matrix Fi,j corresponding to a rotation of the error matrix about z by an angle α can
thus be written:

(1.47) Fi, j =

cos! 0 0 0 0

0 1 0 0 0

Ci sin! 0 cos! + " sin! ysin! # "x sin! 0

0 0 0 1 0

0 0 0 0 1

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

The code uses the following expression to calculate the error matrix.

(1.48)

c ' = F !1()c F !1()

T

+ F !1()c + c F !1()
T

+ c

